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Sufficient conditions for convergence of antinormally 
ordered expansions of boson number operator functions 
f(&+&) 

R Baltin 
Department of Theoretical Chemistry, University of Ulm, Ulm, Federal Republic of 
Germany 

Received 1 February 1983 

Abstract. From previous work on ordering expansions of the boson number operator 
exp(-p?'a^) formulae are derived for normally and antinormally ordered forms of 
arbitrary boson number operator functions f(a^'a^) in terms of the Fourier transform g ( h )  
of f ( x ) .  When the antinormally ordered form f'"'(a*'a^) is applied to states belonging to 
the domain of definition of f(a^'a^), the result differs in  general from the action of f(a*'a^) 
on these states or is not even defined. For the number operator eigenstates im) two 
criteria are derived which give conditions on the Fourier transform g ( h )  ensuring validity 
of f"'(a^'a^)lm) = f ( m  ) Im).  The general considerations are demonstrated by two examples 
for functions f. 

1. Introduction 

Normal- and antinormal-ordering expansions of functions of boson annihilation and 
creation operators 6, 6' are important mathematical tools for the treatment of systems 
of harmonic oscillators and quantised fields, mainly in quantum optics, especially in 
laser theory (Lax and Louisell 1967, Haken et a1 1967, Lax and Yuen 1968) and in 
studies of coherence properties of light (Sudarshan 1963, Glauber 1963a, b, Mandel 
and Wolf 1965). In all these fields quantum-statistical averages Tr@f) of operators 
f have to be determined for systems described by density operators 6. The use of 
ordered operator expansions arises from the fact that Tr(@) can be converted to an 
integral over certain c-number functions associated with the normally ordered 
expansion of p* and with the antinormally ordered expansion of f or vice uersa (for 
details see e.g. Louisell 1964, 1973). In the quantum theory of optical coherence a 
more direct physical meaning can be ascribed to the expectation value of normally 
ordered multiple products of field operators as being proportional to the rate of 
delayed multiple coincidence counting of photoelectric detectors by absorbing photons 
(Glauber 1963a, b, Mandel and Wolf 1965). On the other hand, expectation values 
of antinormally ordered products of field operators can be shown to correspond to 
correlations of the electromagnetic field measured with the help of quantum counters 
based on stimulated emission of photons (Mandel 1966). 

When an operator-valued function f ( 6 ,  6 ' )  is given by a power series expansion 
in 6 and 6 + ,  normal (antinormal) ordering consists in moving all the 6's to the right 
(left) of all 6"s. Since, in this algebraic procedure, the commutation relation [ d ,  6'3 = 1 
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has to be taken into account, it is assumed that the operator !(a^, a^+)  has the same 
effect on any boson state )(/I) as has the normally ordered expression 

aD 
n) A A +  A +  n r m  f (a,= )E 1 c n m ( a  ) a 

n,m 10 

or the corresponding antinormally ordered expression 
m 

* m  A +  n f (")(a^,  a*+)= 1 dnma (a  ) . 

f(6, a*+ )  =fn)(d, a*+) =f'a'(d, d ' ) ,  

n.m=O 

In other words, we expect 

(3) 

For certain simple classes of functions f the ordering can be performed to yield closed 
expressions (Marburger 1966) which have been derived by special techniques like 
coherent state formalism (Louisell 1973, Mehta 1968, 1977, Gluck 1972), parameter 
differentiation (McCoy 1932, Louisell 1964, 1973, Schwinger et a1 1965, Wilcox 
1967) or phase-space mapping (Agarwal and Wolf 1970). 

In applying these methods it was tacitly assumed that equation (3) is always valid, 
i.e. that: 

(i) the domains D, Dpcn), and of definition of f, f'") and f a ) ,  respectively, are 
all the same; 

(ii) for all \(/I) E D we have that 

fl4) =f'"'I(/I) =f"'l(/I,. (3a 1 
However, even for rather elementary, well behaved functions it turned out that 

( i )  is not necessarily satisfied (Cahill and Glauber 1969), especially for the case of 
antinormal ordering. 

For the special case when f depends only on the number operator 6'2, but not 
on ;,a*' separately, (i) and (ii) can be investigated conveniently if one uses the 
eigenstate representation { /m)}  of a*'$, where 

a*+a*jm) = mlm) (4) 

f@+d)lm) =f(m)lm) ( 5 )  

( m  = 0, 1 ,2 ,  . . .). It follows that 

where f ( m )  is the value of the c-number function f ( x )  for x = m, and equation (3a) 
now reads 

f ( m  )Im) =f'"'(a*+a*)lm) =f'"'(ci+t)lm). (36) 

f(d '6) = exp(-pd ' d  ) 

In a recent paper (Baltin 1982) the author has shown for the exponential 

(6) 
(p complex) that 

[exp(-pa^'a*)]'"'lm) = exp(-pa*+d)lm) = e-CLmlm) 

for all lm) and all p, but that 
(7) 
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for all /m) only if 

11 -eFI < 1. 

For 

I l - e F l s l  (96 1 
[exp(-pa*'d)]'"'lm) has infinite norm for all occupation numbers m = 0, 1 ,2 ,  3, . . . , 
i.e. the antinormally ordered expansion of exp(-pa*'a*) does not even exist. 

The purpose of the present paper is to study conditions under which antinormal 
ordering of arbitrary functions f(a*+a*) can be achieved such that equation (36) remains 
valid. 

Starting from well known expressions for the normally and antinormally ordered 
exponential (6 )  corresponding ordering formulae are established for f(a*'a*) in terms 
of the Fourier transform of the c-number function f ( x )  (8  2). In 8 3 formal expressions 
for f'"'(Ci'a*)lm) and f'"'(a*+a*)\m) are derived. Using the above-mentioned results 
on ordering the exponential, two sufficient criteria on consistent antinormal ordering 
of f(a*'a*), i.e. including validity of equation (36), are obtained in 0 4. These general 
considerations are then applied to two operator functions as examples (8  5 ) .  In 8 6 
results are summarised and discussed. 

2. Ordered expressions of arbitrary operator functions f ( d ' d )  in terms of Fourier 
transforms 

Suppose the existence of the Fourier transform g(A) of the real c-number function f ( x )  

or 

1 +O0 

g (AIz-1  2lr -a f (x)eiA"dx.  

When f(d'6) is defined by replacing x by d'8,  we obtain 
+m 

f(&'a*) = I-, g(h)  exp(-ihd'a*) dA 

and hence, at least in a formal manner, 
+m 

[f(Z'a*)]'"'= g(h)[exp(-iha*+a*)]'"' dh 

and 
+m 

g (A )[exp(-iAa^'&)]'"' dh. 

When the well known expressions for ordered exponentials (see e.g. Louise11 1973) 
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(1-e')" 
(exp(-@+a^))'"'= e" C ~ a^"(d+)" 

v = o  v !  

are inserted in equations (12a), (126), respectively, putting CL = -ih, we obtain 

a 

(14a) * +  " * U  f '" ' (a^ 'a^)= 1 c,(a ) a 
"=O 

where 

and 
m 

f '" ' (a^+a^) = 1 d,a^"(a^')" 
" =O 

where 

3. Effect of ordered operator expressions on basis states Im): formal results 

Let us apply the operator expansions (14a, 6 )  to the occupation number eigenstate 
Im). Noting 

i16a, b) z l m )  = Jimlm - 1) a^+lm) = Jm + llm + 1) 

we obtain from equations (14a, 15a) 

Since the sum terminates, we are allowed to interchange summation and integration. 
Using the binomial theorem, we find 

+X t m  

f'"'(a*'d)lm) = / m )  g(h)[ l  +(e-'* - l)]" dh = / m )  g ( A )  e-'Am dh 
-a -a 

or from equation ( loa) 

f'"'(6 +a* )Im) = f ( m  )lm ). (17) 

Thus equation (36) is always satisfied for normally ordered expressions of f(a*'d). 
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Using (146, 156), and (16a, 6),  we obtain for antinormal ordering 

m 

f'"'(a*'a*)Im)= d,a*"(a*')"lm) 
" = O  

+m 

=Im) u = o  2 ( m + v  v ) I_, g(A) e i A ( l  -e iA)" dh 

=im) n - m v = o  lim 1 ( v ) I_, g(A) e i A ( l  -e iA) '  dA 
+W m f v  

where 

m + v  m + v  
s , , , ~ ( ~ A ) =  1 ( )(l-e'")"= 1 ( )(l-e '*)" 

u = o  v ,,=o m 
n + m  

= u = o  1 ( l ) ( l - e l A ) ' - m .  

Since fer all real A 

we obtain 

and, therefore, 

The special case m = 0 yields 
. +oo 

Until now we have not been able to decide whether the right-hand side of (22) equals 
the state f (m) im)  (see (36)) unless we can perform the limit n +CO. However, the 
existence and value of the limit depend crucially on the Fourier transform g(A). In 
§ 4 conditions on g(A) are given which ensure the validity of equation (3b) .  

4. Sufficient criteria for antinormal ordering to be consistent 

4.1. First criterion 

Let us call a normally or antinormally ordered form of f ( 6 ' 6 )  consistent if equation 
( 3 b )  is satisfied. Then, according to § 3 ,  all normally ordered expressions f'"'(a^'a*) 
are consistent. 
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For the case of antinormal ordering we start from equation (18). Elementary 
analysis allows us to write . +m 

f'"'(ci+ci))m) = J m )  J g(A) eiA lim sn,,(iA) dA (23 )  
n - m  --CO 

if the sequence of partial sums sn,,,,(iA) converges uniformly, at least for those parts 
of the A axis where g(A) does not vanish. Since 

is a power series in U, s,,,, is uniformly convergent for all v with Iu /  s r - E where r is 
the radius of convergence and E > 0 infinitesimal. It has been shown previously (Baltin 
1982) that 

r = l  ( 2 5 )  

and that 
- i A ( m + l l  s,(iA) = e 

for 

1 1  -eih 1 < 1. 

Thus sn,,(ih ) is uniformly convergent for 11 - eiA 1 s 1 - E or 

C O S A  2$+& 

which corresponds to 
t m  

k=--33 
A E J =  U 5 k  

where J k  are closed intervals of the real A axis defined by 

( 2 9 )  

If we suppose g(A) = 0 for all A outside J the only contributions to the integral 
( 2 3 )  come from those parts of the domain of integration where sn,,, is uniformly 
convergent. Consequently, we obtain 

1 1 
dk  3 [ 2 ~ k  - 3 ~  + E ,  2 ~ k  +TIT - E ] ,  k = O ,  jzl, 1 2 , .  . , . 

+m 

f '" '(&'z)/m) = Im) g(A) eiA e-iA"+" dA = f ( m ) b )  
-m 

due to equation ( loa) .  
Thus we are able to state the following. 

First criterion. If the Fourier transform g(A) of the c-number function f ( x )  vanishes 
for all ALfJ then f'"'(a*'&)lm) is defined for all occupation number states Im) and 
equals f(m)lm>. 

4.2. Second criterion 

When g(A)#O for some interval with I1-eiAIS1 series ( 2 4 )  is divergent so that 
expression ( 2 3 )  becomes meaningless. In this case interchange of the limiting process 
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with the A integration is clearly forbidden. However, this does not imply that the 
right-hand side of equation (18) does not exist. One can realise that parts of the 
integrand blowing up as n + 00 will cancel when the integration is performed first so 
that the limit n + 00 can be taken subsequently. We are now going to derive a criterion 
which states sufficient conditions under which this cancellation happens. The mathe- 
matical tool of the derivation is complex function theory. 

Let the complex function h ( w )  be analytic on and inside the unit circle, IwI G 1, 
of the complex w-plane. Suppose, furthermore, 

(1) g ( A )  coincides with h(w) on the unit circle 

g ( A )  = h(eiA) (30) 

(2) g(A ) = 0 for ( A  I >c. (31) 

for all real A with [A I s c, where c is some positive number; 

In deriving the criterion we shall proceed in three steps: 
(i) transformation of jTz g ( A )  eiAsn,,,,(iA) dA (see equation (18)); 
(ii) performing the limit n +CO;  

(iii) transformation of f( 6 '6 )I m ) = f ( m  )I m ) (equation ( 5 ) ) .  
After these steps have been done, the relation between f"'(6'6)im) and 

f(6'6)lm) is established by comparison and formulated in the criterion at the end of 
this subsection. 

(i) On account of condition (31) we write 

f '" '(6+6)jm)= Im) n-w lim R , , ( c )  ( 1 8 ~ )  

where 
+ C  

R,m ( c )  I_, g(A ) eiAs,,,,, ( iA ) 

can be written as a complex contour integral 

by substituting w = eiA and the definition (19) of s ~ , ~ .  Let us split up 

c = c o + k ~  ( k  integer 3 0) O ~ c o < r .  (34a, b )  

As A runs from -c to +c, equation (321, w moves along L ,  namely counter-clockwise 
on the unit circle from exp[i(-co- kr)] = (-l)k exp(-ico) to exp[i(co+ kr)] = 
(-l)k exp(ico) thereby describing a full circle k times. When the paths in the w plane 
corresponding to -c S A  s -kr and to +kr C A  sc are denoted by L-  and L', 
respectively, we obtain 

Since the integrand of (33) is analytic for Iw s 1 and for finite n we obtain 
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If co = 0, i.e. c = krr, i t  follows from (35), (36) immediately that 

Rn,m(kV) = 0 

for all n and m and, therefore, in the limit n + 00 

f‘a’(a^+a^)lm) = 0. 

The case co > 0 which is treated in appendix 1 yields for m > 0 

where z = z +  or z - ,  equations (A1.7a), for k even or odd, respectively. y l ( u )  and t ( u )  
are defined by (A1.5) and (A1.6) and the integration is to be performed along the 
contours Vi (figures l(a)-l(b)) for k even or odd, respectively. 

Figure 1. ( a )  Contour V’ of integration in expressions (38) ,  ( 3 8 a )  if c = k n + c o  with k 
even. V’ extends from z f  to z +  on the unit circle K. ( b )  Contour V -  of integration in 
expressions (38), (38a)  if c = k r + c o  with k odd. V -  extends from z ?  to z -  on the unit 
circle K .  

If m = 0, we simply obtain 

(ii) The existence of limn+= R,, , (c)  is ensured if the limit of the sum in equation 
(38) exists and if the contours V” can be deformed such that Iu /  s 1 - E  along the 
entire path of integration. As is derived in appendix 2, this is satisfied: 

(a) for k even, if lz+l< 1 or, equivalently, 

( A 2 . 8 ~  ) 1 0 s C O < j r r  

and the contour V’ (= W’) remains unchanged. 
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(b) for k odd, if l z - (<  1 or 

and V -  is replaced by W -  (see figure 3). 
The limit is given by (A2.5). From (A2.4) and (A2.7) we then obtain 

(iii) In order to compare f'"'(a^'a^)lm) with f ( m ) l m )  let us set x = m in equation 
( loa) and substitute w = eiA. 

The integrand has a pole at w = O .  If we split up the contour integral in exactly the 
same manner as we did in the case of f'"'(a^'a^))m), we obtain 

where 

h(w) d w  27rk d"h(w)l 
-ik IF=- ___ = (- 1)" -y 21rk t"'( 1) 

m !  dw" w = ~  m .  

due to the Cauchy formula. Furthermore, we obtain 

+ C O  

-i( jL- + l L )  = ( -  l )km h(( - l )k  eiA) e-iA" d h  
-CO 

1 - v  1 - v  

analogously to equation (39). Again V = V'( V - )  and z = z + ( z - )  for k even (odd). 
Since, however, no geometric series occurs in these expressions, there is no problem 
of convergence that would force us to confine z to satisfy Iz/ < 1. 

We obtain from equations (41)-(43) and from (A2.5) and (A2.9) 

f ( m )  = (-1)"(21rk/m !)rem'( 1) +I?';, k even (44a 1 
and 

f ( m )  = (-1)"[27r(k + l)/m!]t'"'(l)+R, k odd. (44b) 

By comparison with equation (39) we obtain for k even 

f'"'(a* +a* )Im) = f ( m  ) / m )  - (27rk/m !)h'"'(O)lm) 
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if condition ( A 2 . 8 ~ )  is satisfied. Similarly, for k odd 

f'"'(ci +ci)lm) = f ( m  )Im) - [27r(k + l) /m ! ] h ' " ' ( ~ ) l m )  

c o = o  

if condition (A2.86) or 

is satisfied. 
Relations (45a, 6)  can be given a more compact form. We find that 

f"'(ci+ci)jm) =f(m)jm)- (4?rj/m !)h'"'(O)lm) 

27rj-f?r<c<2?rj+&r 

c = (2j - l ) ~  

for j = 1,2 ,3 ,  . . . . The case j = 0 yields 

if 

or if 

f("'(a*+ci)/m) =f(m)jm) 

o s c  C3T. 

if 
1 

For j > 0, relation (49) holds for all m only if 

h y o )  = 0 (51) 

( m  = 0, 1,2,  3 , .  . ,). Since h ( w )  was assumed to be analytic for IwI s 1,  it can be 
represented by its power series expansion 

w" 
h ( w ) =  +"yo) 

v = o  v .  

in this domain. Therefore, from (51)  we obtain h ( w ) = O  (Iwl s 1) which means that 
g(A) = 0 for all A and thus f(x) = 0. It follows that if g(A) satisfies assumptions (30) 
and (31) with c iZ [0, br), equation (49) cannot be valid for all states lm) unless f(x) = 0. 

The results of this subsection can be stated in the following. 

Second criterion. If the Fourier transform g(A) of the c-number function f(x) satisfies 

g(A 1 = 

then 
(a) f'"'(i?'s)/m) does not exist for any state Im) if none of the conditions (47), 

(48), (SO) or c = 27rj 3: $?r is satisfied. Hence, for this case ED'") = 0. (If c = 27rj 3: ~ 7 r  

no general statement can be made. Rather each specific case has to be investigated 
separately.) 

(b) f"'(a^'ci)lm) exists and is given by (45) if (47) or (48) is satisfied. However, 
(49) cannot be true for all m unless f ( x )  = 0. 

(c) f'"'(2'6)lm) = 0 for all m if equation (48) holds. 
(d) If c satisfies (50), f'"'(d'd)lm) exists and equals f (m) lm)  for all m, i.e. only 

h (elA) for Ih 1 s c where h (w) is a function of the complex variable w 
and analytic for I w I s 1 

[O for/Al>c 

1 

in this case is antinormal ordering consistent. 
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5. Examples 

In this section two examples of operator functions f(a^'a^) are considered. They are 
both chosen such that all calculations remain tractable from the mathematical point 
of view. The criteria derived above are partially applicable to the first example, but 
not to the second. In the latter case, however, we shall be able to prove by direct 
methods of evaluation that f"'(ii'c?)lm), at least for m = 0, does not exist. 

5.1. Antinormal ordering off (&'a^) = sin(ca '̂a^)/ca '̂a^ 

The function 

f (x )  = sin(cx)/cx c > o  

has a very simple Fourier transform (see e.g. ErdClyi et a1 1954) 

fc-1 if I A ~ < c  
dx = fc-' if IA I = c 

if [A  I > c .  

1 "  sin(cx) 
g ( A )  = - I cos(Ax) - 

T o  cx i o  
(53) 

(54) 

Let us first calculate f(')((i+d) from equation (156): 

or 

for Y = 2k (k S O )  
(-')' [2 sin($c)12'" cos[fc(2k + l)] 

( 5 5 )  
f o r v = 2 k - 1  (k>O) .  

Evidently, the coefficients of the formal expansion of f(a)(a'a), equation (14b), have 
no singularities. 

When the states f("'(2'6)Im) are considered, one has to distinguish four cases: 

(1) o s c  <fT 

(2) IC - 2jlrl< ilr 
(3) c = ( 2 j  - l )T 

(4) 0 < IC - (2j - l)Tl s :lr. 

Here j > 0 is an arbitrary integer. Each non-negative value of c falls into one of these 
four classes. 

Case (1).  Both the criteria of § 4 are satisfied. From c E .Do, equation (29), it follows 
that g(A) = 0 for A & J0c  J. Thus the first criterion states that 

for all m =0, 1 , 2 , .  . . . 
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The second criterion can be applied by putting 

h(w)=tc-'=constant. 

Then (57) follows from part (d) of the criterion. 

Case (2). The first criterion cannot be applied since g ( A ) = f c - ' # O  for all A 
with -c < A  < +c thereby including intervals [(2l + 1 ) ~  -f.rr, (21 + l).rr + $ r ]  
( I  = 0 ,1 ,2 , .  . . , j -  1) sharing no common points with J. According to the second 
criterion, part (b), and to equation (45), we obtain 

sin(c6'6) m ) =  
ca a m !  2c (59 )  

since clearly all derivatives of the constant (58) vanish (except for h"" = h ) .  Thus, for 
m > 0, equation (57) is valid, but for m = 0 

Case (3). Again, only criterion (2) is applicable. According to part (c) we obtain for 
all m 2 0 

On the other hand, 

f ( m ) l m )  = /m)sin[(2j - I).rrm]/(2j - I).rrm = o 

f(0)lO) = 10) f. 0. 

only if m > 0; however, 

Therefore, as for case (2), antinormal ordering is consistent except for m = 0. 

Case (4). The second criterion, part (a), states that f'"'(6'6)Im) does not exist if 

O <  jc - (2j- l).rrI< $r. 

c =(2j - l )7r*$r  

We still have to treat the cases 

which correspond to 
1 c = 2 j ~  -TT 

and 

c =2(j-l).rr+f.rr 

respectively. For the sake of simplicity, let us confine discussion to states 10) and 11) 
only. 
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5.1.1. m = 0. When c satisfies ( 6 2 a )  this corresponds to co = $r and k = 2j - 1 (com- 
pare equations (34a ,  b ) )  and from ( 3 8 a ) ,  ( 5 8 ) ,  (A1.5), (A1.6) and ( A 1 . 7 6 ) ,  we obtain 

Noting 

z -  = 1 +exp(ti.rr) = exp(fi.rr) 

we find 

The limit n + 00 exists and can be expressed by the Bernoulli polynomial Bl (x)  = x  - $  
(Abramowitz and Stegun 1972) 

hence, according to ( 1 8 ~ )  

10) 
.rr 1 ( a i  A +  A f (a a 110) = 10) lim R,,o = -- 1 0 )  = - 

n-m 3~ 1 - 6 j  

which equals expression ( 5 9 a )  for c + [ 2 j r  - in]+. When c is given by ( 6 2 6 )  we get 
co = j.rr and k = 2j - 2 even. Thus, we have to evaluate ( 3 8 a )  with V = V' and 

( 6 7 )  

1 

z + =  l-exp(fi.rr)=exp(-ji.rr)=zT. 1 

f'ai(8'8)10) = (6 j  - 5)-'/0) 

The calculation being quite similar to the case just treated leads to 

( 6 8 )  

which again is in agreement with (59a)  for c +. [ 2 ( j  - 1 ) ~  +in]-.  

5.1.2. m = 1. Since all derivatives of t ( v )  vanish identically, only the term with p = 0 
contributes to expression ( 3 8 ) ,  so we are left with 

When c is given by ( 6 2 ~ 1 ,  insertion of z = z -  (equation ( 6 3 ) )  leads after some algebra 
to 

R,,,l = -c-'[sin(f.rr)+sint3n.rr)]. ( 7 0 )  

Rn, l  does not exist. It follows immediately from (671, ( 6 9 )  that the Evidently, 
limit of Rfl,l does not exist either if c satisfies ( 6 2 6 ) .  

The results of this subsection are shown in figures 2 ( a )  and ( 6 )  where the ratio 

is drawn against c .  When limn.+m R,,,, = f ( m )  = 0 we have set /3 1. 
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l-- 'P 
! 

P 
I bI 

Figure 2. ( a )  Ratio 6, equation (71), against c for m = O .  At the empty parts of the 
diagram limn+- and hence 6 does not exist. Note the isolated points at c = n, 3n, . . . . 
(6) As for ( a )  for m >O. Light circles denote points to be excluded from @ ( c ) .  At the 
points c = n, 3 ~ , .  . . where both limn+m R,, and f ( m )  vanish we have set @ = 1. 

5.2. Antinormal ordering off(6'6) = [b2 + (6'6)2]-' (b > 0) 

Since the power-series expansion of f ( x )  = (b2+x2)-' (b > 0) about the origin 

f ( x ) = b - ' [ l - ( ~ / b ) ~ + ( x / b ) ~ T . .  .] (72) 
converges for Ix I < b the corresponding operator expansion with x replaced by 6'2 
can be applied at least to state 10) yielding 

f(6'a)IO) = b-'10). (73) 
Let us now establish the formal antinormal-ordering expansion (14b), (15b) and then 
let this expansion act on state IO). The Fourier transform (loa) is given by (ErdClyi 
et a1 1954) 

1 "  -blAl g(A) = - I f ( x )  cos(Ax) dx = - e 
T o  26 (74) 

and, therefore, the coefficients d, 

1 
v !  (75) 

- b I A  d,=- e e'*( 1 - e'")" dA = - (g,, - g,+l) 

where 
.+CO 

g, 9 J g(A)(l -ei")" dh. 
-cc 

Since here g(A) is an even function of A we have 

1 "  
g, = 26 jo e-b"[( 1 - ei" 1' + (1 - e-'" )"I dA. (77) 

g, and d, have been evaluated in appendix 3. We thus obtain from (14b), (A3.8) 

The action of this operator expansion upon the state 10) is given by the limit (22a). 
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Since g ( A )  # 0 along the entire real A axis the first criterion ( 0  4.1) fails. Furthermore, 
g(A) cannot be represented as an analytic function of w = eiA, not only because of the 
appearance of the absolute value of A in the exponent. For example, even a function 

- bA e = exp(ib In w )  

is not analytic. Therefore, the second criterion (8 4.2) cannot be applied either. We 
are thus forced to evaluate (22a) directly. 

The limit in  (22a) can be written as 

The limit of g,, however, does not exist as has been shown in appendix 3 (equation 
(A3.20)). Thus 

[1/[b2 +(6+6)2]]'a'10) 

does not exist either. 

6. Conclusion 

When the antinormally ordered expansion f'"'(â, 6') of an operator function f(6, 6') 
is applied to a state 14) belonging to the domain of definition off the following results 
are possible: 

(i) f a )  (I) does not exist; 
(ii) f a  I 14) exists, but fa'[$) icfl4); 
(iii) fa ' /$)  = f l ( ~ ) .  

This is in contrast to the action of the normally ordered expansion f"' upon 14) where 
f"'l4) =fl4) holds always. 

Since the peculiar behaviour of f'"'l4) can be observed even for fairly simple 
operators f, we have considered the specia! class of functions which depend on the 
number operator 6'6 but not on 6 and 6' separately. In that way, all calculations 
become easier by use of the eigenstate representation {Im)} of 6'6. 

The normal- and antinormal-ordering expansions of f(6'6) have been derived in 
terms of the Fourier transform g ( A )  of the associated c-number function f ( x )  (see 
equations (14a, 6 ) ,  (15a, 6)). When the states 14) are chosen to be the eigenstates 
Im) the action of f(" '  on Im) is given by f (m) lm) .  However, f" ' lm) reproduces [ m )  
up to a factor which is the limit of a sequence of integrals involving g ( A )  (equations 
(22), ( 2 2 ~ ) ) .  The main part of this paper deals with the question whether this limit 
exists and, if so, what value it takes on. If the limit exists for all m and has the value 
f ( m )  then we called the antinormal-ordering expansion 'consistent'. 

The difficulties we encounter with the convergence of f'"'1m) are not too surprising 
since they can be traced back to a phenomenon well known for a very long time from 
the theory of conditionally convergent series. The sum of a series of this kind can 
change its value or can even be made divergent by rearrangement of infinitely many 
members. This remains true a fortiori when an infinite number of new terms is added 
and, simultaneously, subtracted, however, in a different order. It is just this kind of 
procedure involved when a power series expansion of f(6'ci) is transformed into 
f"'(6'6) by repeated use of the commutation relation between 6 and 6' and 
subsequently is applied to Im). 
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In $ 4  conditions on g(A) are given which are sufficient that the limit ( 2 2 )  
exists and has the value f (m) lm) .  

The first criterion (0 4.1) states that consistent antinormal ordering is possible if 
g(A) vanishes outside the union J (equations ( 2 8 ) ,  ( 2 9 ) )  of intervals of the A axis. The 
derivation is based on uniform convergence of the integrand of ( 2 2 )  or ( 2 3 )  inside J 
which allows interchange of the limiting process with integration. 

The second criterion can be applied provided g(A 1 can be written as an analytical 
function of exp(iA) inside a certain interval [-c, + c ]  and being zero outside. Whether 
f ' a ' /m)  satisfies cases (i), (ii), or (iii) then depends crucially on the extent of this interval. 
Only if O s c  < f ~  is f'"'lm) consistent (case (iii)). For other values of c cases (i) and 
(ii) hold true (see the precise statements at the end of Q 4 .2 ) .  The second criterion is 
based on the cancellation of parts of the integrand of ( 2 2 )  which tend to grow up as 
n +CO. This is possible due to the special property of analyticity imposed on g(A). 

In both these criteria rather restrictive conditions have to be satisfied by g(A) to 
ensure consistent antinormal ordering: the first criterion ensures consistency if g ( A )  = 0 
for all A with cos A < t ,  the second even only if g(A) = 0 for / A  1 > f ~ .  

For instance, all polynomials of 2'2 can be cast into consistent antinormal order 
because the Fourier transform of a polynomial is given by a finite linear combination 
of a S distribution and its derivatives located at A = 0, i.e. g(A) = 0 for A # 0. This 
result is expected, of course, since antinormal order is obtained from the original 
operator form by a finite number of commutations and rearrangements. 

An application of the criteria which is much less trivial has been given by the first 
example f ( x )  = sin(cx)/cx, c > O  (see 9: 5 .1 ) .  From figures 2 ( a ) ,  (6) it is seen that all 
of the three possible cases (i)-(iii) really occur. 

Both the criteria cannot be applied to large classes of functions the Fourier 
transforms of which do not vanish except for isolated points of the A axis. Nevertheless, 
from the derivation of the criteria it seems doubtful whether a consistent antinormal 
ordering exists for these operator functions at all. An example is given by f (2 '2)  = 

[ b 2 + ( a  a )  ] ( 0  5 . 2 )  where expression ( 2 2 a )  can be performed exactly, the result 
being that f'"'l0) does not exist for any value of 6. A numerical study of ( 2 2 a )  for 
the operator f(2+2) = exp[-b(a a )  ] indicates that ( 2 2 a )  for this case does not exist 
either. 

In summary, we can conclude that the formal procedure of antinormal ordering 
of an operator function f (2 '2)  produces an operator expression f'"'(2'2) which, for 
large classes of functions, exhibits properties quite different from those of f(2'2) 
although the commutation relation [a^, a^'] = 1 is taken into account strictly. 

A + A  2 -1 

A + *  2 
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Appendix 1. Transformation of R,,, (c) (see (33), (35)) for co > 0 

Due to equation ( 3 6 )  we obtain from equation ( 3 5 )  

( A l . l )  
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where 
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(A1.2) 

When w = exp[i(u 3: kr)] is substituted in j L * ,  respectively, we find 
+CO 

R n , m ( c ) = R n , m ( c o + k ~ ) = ( - l ) k  1 e'"fn,,((-l)k e'") du. 
- C O  

Introducing a new complex variable 

U z 1 + ( - ~ ) ~ + l  eiu (A1.3) 

the integral becomes 

where 

(Al.5) 

t ( u )  = h ( l  -U). (A1.6) 

t ( u )  is analytic for 11 - u l s  1, i.e. on and inside the unit circle K centred about ( 1 , O )  
in the U plane. The contour V depends on whether k is even ( V =  V') or odd 
( V =  V- ) .  Both cases are shown in figures l(u)-(b) respectively. V* lies on the 
segment of K between 

z+ = 1 ~ e " 0  and z* * - - 1 re-"". (A1.7u, b )  

V* begins at z:, is directed counter-clockwise and ends at z*.  Let us integrate 
expression (A1.4) m times by parts. This is allowed because t ( u ) ,  being analytic for 
11 - - V I  G 1, has differential quotients of arbitrary order in this domain. We obtain for 
m > O  

where the upper (lower) sign holds for k even (odd). 
The case m = 0 simply yields from (A1.4) 

Appendix 2. R,, ( c )  in the limit n + CO 

When n tends to infinity Y ~ + ~ ( u )  i n  expression (A1.8) becomes 

(A1.8) 

( A 1 . 8 ~ )  

(A2.1) 
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provided that / U /  < 1. Since, according to a well known theorem of analysis, a conver- 
gent power-series can be differentiated termwise, we find 

(A2.2) 

Thus, if Izm/ < 1 the limit n + 00 of the sum in expression (A1.8) exists. 

odd. If k is even (contour V + ,  see figure l(a))  and if 
Concerning the integral in (A1.81, we have to distinguish whether k is even or 

IUI / z + /  < 1 ( A 2 . 3 ~ )  

then yn+,, , (v)  converges uniformly for all v E V'. Therefore, the limit n +CO can be 
performed under the integral sign and we find from (A1.8), (A2.1), and (A2.2) 

where 

if k is even and /z+1< 1. 
On the other hand, if k is odd (contour V - ,  figure l (b ) ) ,  condition 12-1 < 1 does 

not imply l u l < l ;  e.g. V -  intersects the real U axis at U = 2 .  Since, however, the 
integrand of expression (A1.8) is analytic for /U - 11 s 1, V -  can be replaced by a new 
contour W -  where U moves clockwise on K from z !  to z -  (see figure 3). Now, for 
all U E W - ,  

jul 12-1 < 1 (A2.36) 

Figure 3. Contours V -  and W -  of integration in expression iA2.56) if c = k n  + co with 
k odd. When z -  lies inside the unit circle about the origin (broken line) then , z - / <  1, 
i.e., c,>:n. This case is shown here. 
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so that again the limit n -+ co can be interchanged with the integration along W - .  We 
obtain 

f'"'(d'8)Im) = 1m)R; (A2.46 ) 

where now 

(A2.5b) 
R ;  =A[ ( mzl /L = O  (-l)"t '" '(u) (1 --U),-" 

if k is odd and (2-1 < 1. 
When we define paths of integration 

W + E  v' k even 
w- (Z v-) k odd 

W = (  

then equations ( A 2 . 4 ~  b) ,  (A2.5a, b )  can be written 

f'"'(d'd)Im) = 1m)R; 

where 

(A2.6a, b )  

(A2.4) 

if 

/2*1< 1 

for k even or odd, respectively. 
Iz+I < 1 is satisfied for 

1 
o s C o < 3 7 T  

(A2.7) 

( A 2 . 8 ~ )  

(A2.86) 

Note that after the limit n + m has been taken, the Cauchy formula evidently yields 

(A2.9) 

If lz*\ > 1, limn,, R;,, and, therefore, f'"'(8'8)(m) does not exist, except for z -  = 2 
which corresponds to c = k.rr for k odd. In this latter case R , ,  = 0 (see equation 
(3%)) and hence R ;  = 0. If lz*l= 1 no general statement on convergence of 
limn+a I?",, is possible. 

Appendix 3. The integral g, = (26)-' ~f",e-b'A'(l - eiA)" dA (equations (76), (77)) 

Using the identity 

1 -eiA = 2 sin(:A) exp[$i(A - T)] (A3.1) 



2740 R Baltin 

we can write the first term of integral (77) 

%lo 1 “  e - bh ( l - e i h ) ” d h  

1 e - hh ( l - e i h ) ”  dh 

e - bh sin”($A) exp[&(h - H ) ]  dA. (A3.2) 

Substitution 4 = ; ( A  - H )  yields 

26 I, e (1-e ih)”dh  = 
2” e-h“ 

exp[(iv - 2b)4]  cos” 4 d 4  1 “  - hh 

b(1 -e-2bn) -=/2 

s / 2  2” 
- - cos[(. +2bi )4]  cos”4 d4.  (A3.3) 

b sinh ( b r )  lo 
The integral (A3.3) can be solved in terms of the beta function B(p, q )  (Gradshteyn 
and Ryzhik 1965). We obtain 

(A3.4) 
1 ”  H 5 lo e-bh(l  -eih)” dh = 

26 sinh(b.rr)B(v + 1 + ib, 1 - ib)’ 

When B is expressed by the T function and the relation 

r(l +ib)T(l  -ib) = Hb/sinh(Hb) (A3.5) 

is used we get 

(A3.6) 
1 “  U !  %lo e-bh(l-eih)”dA = 2b2(v + ib ) (v  - 1 +i6)  . . . (1 +ib)‘ 

Since the second term of the integral (77) is the complex conjugate to the first we 
obtain its value immediately by taking the conjugate of the right-hand side of equation 
(A3.6). So we find 

U! ( r ( l + i b )  + r ( l - i b )  
26 r ( ~ + l + i ; b )  T ( v + l - i b )  g, =2 (A3.7) 

and from (75) after some algebra 

d ,  = -b-’ Im[r ( l+ ib) /T(v+2+ib) ] .  (A3.8) 

To perform the limit (79) we need g, for U >> 1. From the asymptotic representation 

(A3.9) 

(Abramowitz and Stegun 1972) where z + 00 is a complex number with larg z /  < T,  

we find for 

z = v + l + i b  (A3.10) 

ryz)-exp[(z -$) In z - z  + ; l n ( 2 ~ ) ]  

that 

In z = I n ~ z ~ + i a r g ( z ) = l n [ ( v + 1 ) 2 + b 2 ] 1 ’ 2 + i  tan-’[b/(v+l)] (A3.11) 
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and 

1 + i b ) - J ~ e x p [ u . ( b ) + i v , ( b ) l  (A3.12) 

where 

u,(b) =(v +;) ln[(v + l )Z+b2]1/2-b  tan-’[b/(v + 1)]-v - 1 (A3.13) 

and 

v , ( b ) = b  l n [ (v+1)2+b2] t /2+(v+4)  tan-’[b/(v+l)]-b. (A3.14) 

Thus we get 

T(v  + i)/m + 1 + ib) - exp[uv(0) - u,(b) - iv,(b)] (A3.15) 

noting that v,(O) = 0. Since v >> b 

& ( O )  - U” (b  1 

and, therefore, 

lim exp[u,(O) - U,@)] = 1. 
U-m 

(A3.16) 

However, for v + CO 

v , ( b )  - b ln(v + 1) (A3.17) 

and hence 

T(v + l ) / T ( v  + 1 +ib )  -exp(-ib ln(v + 1)). (A3.18) 

Using 

r(l *ib) = (7rb/sinh(7rb))”’ exp[*i arg r(l +ib)] (A3.19) 

we finally obtain from (A3.7), (A3.18), and (A3.19) 

1 
b 2  g, - - (.lrb/sinh(7rb))1’2 cos[arg r( 1 + ib) - b  In(v + l)] (A3.20) 

which shows that 1imv+= g, does not exist. 
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